Detecting hierarchical relationships and roles from online interaction networks
نویسنده
چکیده
In social networks, analysing the explicit interactions among users can help in inferring hierarchical relationships and roles that may be implicit. In this thesis, we focus on two objectives: detecting hierarchical relationships between users and inferring the hierarchical roles of users interacting via the same online communication medium. In both cases, we show that considering the temporal dimension of interaction substantially improves the detection of relationships and roles. The first focus of this thesis is on the problem of inferring implicit relationships from interactions between users. Based on promising results obtained by standard link-analysis methods such as PageRank and Rooted-PageRank (RPR), we introduce three novel time-based approaches, “Time-F” based on a defined time function, Filter and Refine (FiRe) which is a hybrid approach based on RPR and Time-F, and Time-sensitive Rooted-PageRank (T-RPR) which applies RPR in a way that takes into account the time-dimension of interactions in the process of detecting hierarchical ties. We experiment on two datasets, the Enron email dataset to infer managersubordinate relationships from email exchanges, and a scientific publication coauthorship dataset to detect PhD advisor-advisee relationships from paper co-authorships. Our experiments demonstrate that time-based methods perform better in terms of recall. In particular T-RPR turns out to be superior over most recent competitor methods as well as all other approaches we propose. The second focus of this thesis is examining the online communication behaviour of users working on the same activity in order to identify the different hierarchical roles played by the users. We propose two approaches. In the first approach, supervised learning is used to train different classification algorithms. In the second approach, we address the problem as a sequence classification problem. A novel sequence classification framework is defined that generates time-dependent features
منابع مشابه
A Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring
All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...
متن کاملThe Role of Online Social Networks in Users' Everyday-Life Information Seeking
Background and Aim: Considering the increasing number of users who interact with online social networks, it can be inferred that these networks have become an essential part of users' lives and play different roles in their everyday life. Therefore, the present study aims to explore the role of these networks in users' everyday-life information seeking. Method: This research is an applied resea...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملA centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملDetecting Hierarchical Ties Using Link-Analysis Ranking at Different Levels of Time Granularity
Social networks contain implicit knowledge that can be used to infer hierarchical relations that are not explicitly present in the available data. Interaction patterns are typically affected by users’ social relations. We present an approach to inferring such information that applies a link-analysis ranking algorithm at different levels of time granularity. In addition, a voting scheme is emplo...
متن کامل